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Flight Mechanics of the 24-Hour Satellite
FRANK M. PERKINS*

Aerospace Corporation, El Segundo, Calif.

The noncircularity of the parallels of latitude, including the equator, will cause the 24-
hr equatorial satellite to drift in longitude. This paper presents simple expressions for the
magnitude, period, and other parameters of these oscillations. The results show excellent
agreement with those obtained by the tedious detailed machine integration of the classical
differential equations of motion. Simple closed-form equations and dimensionless plots are
presented for angular drift rate, altitude, velocity, and period of the satellite's mean path.
For an equatorial elliptic!ty of 3.21 X 10 ~5, the maximum change in altitude of the mean path
for one day is ±1275 ft. This occurs when the satellite is half-way between the major and
minor axis of the equator. A diurnal oscillation can exist about this mean path. The maxi-
mum magnitude of the oscillation in this example is ±203 ft, which is 1/2^ as great as the max-
imum daily change in altitude.

Nomenclature

A = maximum value of tangential component of gravity ac-
celeration

g = gravity acceleration
r = radius distance from earth center to satellite
R = earth equatorial radius
t = time
V = velocity of satellite
dr = magnitude of daily oscillation in r from mean path
A = an increment or change in, generally the deviation from

the 24-hr circular orbit condition
A = equals by definition
e = ellipticity of the equator
//, = gravity constant (distanceVtime2) = r2gr
X = satellite longitude measured from equatorial minor axis
T = period of mean satellite drift
w = earth rotational angle

Subscripts
M = at maximum positive or negative X
0 = 24-hr circular orbital conditions

BLITZER1 has shown that the rate of longitudinal drift of
the 24-hr equatorial satellite due to equatorial oblate-

ness is sufficiently large to be of concern to system designers.
With the exception of the period for the case of small ampli-
tude oscillation, Blitzer's work1 did not present any closed-
form analytical expressions for the mean path motion of the
satellite. Such expressions, presented herein, are of value
in developing station-keeping techniques.

The 24-hr satellite in the equatorial plane at a longitude
between the minor and major equatorial axes is illustrated in
Fig. 1. Because of the equatorial oblateness, the gravity
vector is deflected from the center of the earth toward the
major axis, as shown. This gravitational attraction may be
divided into two components: one along the earth radius
vector toward the center of rotation (center of the earth),
referred to as the vertical component, and the other normal
to the radius vector, referred to as the horizontal component.
This latter component is very minute and has the same
effect as a small thrust or drag. Previous studies by the
author2- 3 show that a small drag or a small thrust causes a
sine wave oscillation in both altitude and velocity in which
the mean velocity and altitude (achieved every half revolu-
tion) maintain the circular relationship

V2r = (1)
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In the case of drag2 the altitude decreases, and in the case
of forward thrust3 the altitude increases. Both studies2- 3

show that the rate of change of the mean tangential velocity
is proportional to the tangential force and acts in the direction
opposite to it. The tesseral harmonic of the classical gravity
potential function4 indicates that the tangential component
of gravity caused by the equatorial ellipticity is proportional
to the sine of twice the longitudinal angle measured from the
minor equatorial axis. Therefore, the mean tangential satel-
lite acceleration directed toward the minor axis is

where

mean V — A sin2X

A =

(2)

(3)

Using observed
Izsak5 calculated
33 °W longitude. This value of e gives the following value
of A at the 24-hr circular orbital altitude:

satellite orbit perturbations as bases,
e = 3.21 X 10~5 with the major axis at

A = 5.40 X 10~7 ft/sec2 (4)

As shown later, the satellite remains close to the 24-hr
orbital altitude, and so the value A may be treated as a con-
stant throughout the analysis. Obviously, this tangential
component of acceleration is very minute compared to the
total gravity acceleration in the 24-hr orbit (about 0.736 ft/
sec2), and the entire analysis may be treated using the per-
turbation techniques discussed in Refs. 2 and 3.

The general equation for radial acceleration without thrust
is

r = (72/r) - (rVr) - (/i/r») (5)

where the first two terms on the right-hand side are the
centrifugal acceleration, and the last term is the inverse
square gravity acceleration. In the case of a satellite starting
with circular velocity at or near the 24-hr circular altitude,
the vertical component of velocity r is comparatively low, and
the equation may be reduced to the following:

r = (V2/r) - (6)

Where the overall changes are small, Eq. (6) may be put
into the following incremental form by omitting higher-order
terms:

where

A7/Vo « 1.0 Ar/r0 « 1.0

(7)

(8)
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For convenience, the subscript zero will be used to denote
the 24-hr circular orbital conditions. Since the ideal 24-hr
satellite rotational velocity Vo/r0 is the same as the earth's
rotational velocity co, Eq. (7) can be reduced to the following
by using the circular velocity-altitude relationship shown
inEq. (1):

-.SATELLITE

Af - «(2 A 7 + w (9)

The total acceleration along the flight path is the sum of
the effects of the vertical and horizontal components of
gravity. Since the flight path angle is close to zero, its
cosine may be treated as unity.

Then

V = A sin2X - (10)

Since the longitudinal drift rate X is very small, X in Eq.
(10) may be treated as being constant for one or two revolu-
tions about the earth. Equation (10) then may be written
in incremental form [Eq. (11)] and then substituted into
Eq. (9) to yield Eq. (12):

(11)A 7 = A sin2X A£ - d>Ar

Af = sin2X A£ - cbAr) (12)

With X still being treated as a constant, Eq. (12) may be
solved by a Laplace transformation to yield

Ar = (2A sin2X/cb2)(Ao> - sinAco) (13)

Equation (13) applies only over one or a relatively few
revolutions of the earth, during which the satellite longitude is
relatively unchanged. It does show that the increment in
radius distance above or below the point at which the few re-
volutions start consists of two components: one proportional
to the earth's rotational angle, and the other a sine wave oscil-
lation of the same angle. The period of this sine wave oscilla-
tion is about one revolution, or one day. The magnitude of
the oscillation is shown from Eq. (13) to be

8r = 2A sin2X/co2 (14)

Measuring A at the 24-hr orbit and substituting it from
Eq. (3) into Eq. (14) shows dr to be proportional to the
earth's equatorial ellipticity and to have its maximum value
at a longitude of 45° from the minor axis:

dr = 2(R2/r0)e sin2X (15)

For e = 3.21 X 10~5, the maximum deviation Sr from the
mean path is 203 ft. Equation (13) shows that the corre-
sponding maximum daily change in altitude is 1275 ft.

The existence of this diurnal oscillation (±203 ft maxi-
mum) is predicated upon the assumption that the trajectory
starts in horizontal flight, r equal to zero, with r also equal
to zero. It can be shown that, if the vehicle is started
originally down the mean flight path, these oscillations will
not develop.

The velocity equation corresponding to Eq. (13) may be
found by substituting Eq. (13) into Eq. (11):

A7 = (—A sin2X/cb)(Aco - 2 sinAco) (16)

Omitting the small oscillation from Eq. (13) results in an
equation for the mean path which is applicable within the
validity of a constant longitude X:

Ar = (2A sin2X/co2)Aco (17)

The true differential equation for the mean path with a
variable X now may be found by letting the increments of
Eq. (17) diminish to infinitesimals and by substituting co
for dco:

dr = (2A sin2X/w)(dX/X) (18)

EQUATORIAL
MINOR AXIS

Fig. 1 Illustration of tangential gravity component

Before integrating Eq. (18), it is necessary to find a suitable
expression for X. The longitudinal drift rate is equal to the
difference between the satellite's angular velocity and the
earth's rotational velocity:

X = (7/r) - (70/r0) (19)

Equation (19) now may be put in incremental form:

X = eo[(A7/70) - (Ar/r0)] (20)

The circular velocity relationship, 72r = /* [Eq. (1)],
which in effect states that the centrifugal acceleration is
balanced by the gravity acceleration, next is put in incre-
mental form for the 24-hr orbit:

Ar/r0 = -2(A7/70)
Substituting Eq. (21) into Eq. (20) gives

X = 3w(A7/70) = 3(A7/r0)

Differentiating Eq. (22) yields

" = (3/r0)7

(21)

(22)

(23)

Similarly to the derivation of Eq. (17) for Ar, the omission
of the oscillation in Aco from Eq. (16) results in an equation
for the mean path:

AF = -(A sin2X/w)Ao> (24)

Equation (24) is valid only for sin2X remaining virtually
unchanged. Differentiation of Eq. (24), however, results
in a true differential equation, applicable along the mean
path, in which the drift angle X may be treated as a variable :

7 = —A sin2X

Substituting Eq. (25) into Eq. (23) yields

" = (-3A/r0) sin2X

(25)

(26)

the solution of which is the final equation for the angular
drift rate

X = [(3A/r0)(cos2X - COS2XM)]1 (27)

Since the radical can be either positive or negative, it is
obvious that the drift rate is symmetrical about the minor
equatorial axis from which the drift angle is measured. To
obtain the equation for the change in altitude from the circu-
lar 24-hr altitude, the next step is to substitute X from Eq.
(27) into Eq. (18) and to integrate the left-hand side of the
equation:

. -A I raAr = ^T 1,31
! cos2X

(cos2X -
(28)
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Fig. 2 Geometry of satellite mean path

Ar = (2/co)G4.r0/3)1/2(cos2X - (29)

The presence of the radical and the form of Eq. (29) show
that the deviation in altitude from the 24-hr circular altitude
is symmetrical about both the 24-hr altitude and the equa-
torial minor axis. Equation (26) shows that the angular
acceleration is always toward the minor axis. Equation
(21) indicates that an increase in velocity results in a decrease
in radius distance, and vice versa. Therefore, as illustrated
in Fig. 2, the drift of the satellite is in the direction of earth
rotation when the altitude is below the 24-hr value and is in
the opposite direction when the altitude is high.

The maximum deviation in radius distance from the
circular altitude occurs as the satellite crosses the minor axis
and is found from Eq. (29) to be

Setting the sine of X equal to unity in Eq. (30) and using
5.40 X 10~7 ft/sec2 for A shows the maximum fractional
deviation distance from the center of the earth to be 1.4 X
10 ~3. Equation (3) indicates that A is inversely proportional
to the fourth power of r. Therefore, the maximum fractional
deviation in A from the 24-hr value is less than 6 X 10~3,
which justifies treating A as a constant throughout the
analysis. The principal equations of this analysis indicate
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Fig. 4. Angular drift rate as a function of drift angle

that it is the one half power of A that influences the orbital
parameters. The maximum fractional deviation in A1/2 is
0.28%, and since it is the integrated average effect that
counts, it is safe to say that the maximum fractional error
in the incremental orbital parameters is not more than half
of this value, or 0.15%. If greater accuracy is required, it
can be shown that virtually all of the error in AF and Ar
may be removed by multiplying them by 1 — Ar/r0, which
is the same as 1 + 2(AF/70). It also can be shown that the
finite error in the quarter period expressed in days is ±2X^7
3?r, where \M is expressed in radians. The positive sign
should be used when the altitude is above the 24-hr circular
value and the negative sign when the altitude is below this
value. Since the drift trajectory is symmetrical, the time
errors should balance out, and since A has been treated as a
constant, the total period should not require correction.

If the deviation in altitude from the circular orbit exceeds
the maximum value attainable by Eq. (30), the drift velocity
will be finite as the vehicle reaches the major equatorial
axis, and the vehicle then will cross this axis. Once this is

Fig. 3 Satellite quarter period for two values of maximum
horizontal gravity acceleration Fig. 5 Incremental radius as a function of drift angle
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Fig. 6 Incremental velocity as a function of drift angle

accomplished, the direction of the tangential gravity ac-
celeration A is reversed, and the satellite will continue to
drift all the way around the earth repeating the same mean
path. The analytical expressions derived herein for the
satellite mean path are limited to a maximum drift angle \M
of 90°.

Substitution of Ar from Eq. (29) into Eq. (21) results in
the final equation for the drift velocity along the mean path:

AF = (Ar0/3)1/2(cos2X - W2 (31)
The period of the mean satellite drift about the minor axis

may be found by substituting X from Eq. (27) into the
folio wing arid integrating:

dt = d\/\ (32)

Because the motion is symmetrical (Fig. 2), the quarter
period may be obtained by integrating between X = 0 and

T
4

/^V/2 p

\3Aj Jo
d\

(cos2X — COS2XM)1 (33)

Equation (33) is an elliptic integral of the first kind which
easily is integrated after being put into the following form:

T = j o _ / 2 r-
4 ~ VGA/ Jo (1 - sin2X^ sin2^)1/2

where

A sinX/sinX^

(34)

(35)

Figure 3 is a plot of the quarter period as a function of the
maximum drift angle \M for two arbitrary values of the
maximum horizontal component of gravity acceleration A.
When the amplitude of the oscillation \M is set at zero in
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Fig. 7 Quarter period as a function of maximum drift
angle

Eq. (34), the value of the integral is x/2, and the equation re-
duces to Blitzer's equation1 for the period of a low-amplitude
oscillation.

Substitution of A from Eq. (3) into Eqs. (27, 29, and 31)
shows that X, Ar, and AV, respectively, along the mean path
are all proportional to the square root of the earth's equa-
torial ellipticity e, and Eq. (34) shows the period to be in-
versely proportional to the square root of e. On the other
hand, the minute diurnal oscillations are seen from Eq.
(13) or (15) and from Eq. (16) to be proportional to the first
power of e.

Since the maximum value of the horizontal component of
gravity acceleration near the 24-hr orbit presently is not
known, the principal equations for the mean satellite motion
are plotted in dimensionless form. Equations (27, 29, 31,
and 34) for X, Ar, AF, and r/4, respectively, are plotted
in Figs. 4-7.
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